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FIG. 2. Temperature distribution represented by equations (3) and (4); TV = 0.10. 

The equations derived are equally valid for molecular diffusion. 

REFERENCES 

1. H. S. CARSLAW and J. C. JAEGER, Conduction of Heat in Solids, 2nd Ed. Oxford University Press (1959). 

THE TRANSITION FROM BLACK BODY TO ROSSELAND FORMULATIONS 

IN OPTICALLY THICK FLOWS7 

R. GOULARD 

Purdue University, Lafayette, Indiana 

(Received 6 February 1963) 

THE energy radiated by optically thick flows through 160T3 8T 
their boundaries is expressed sometimes as a black body 

__ .- 

flux qR = oT4, sometimes as a Rosseland diffuse flux 
@= - 3kR ay' 

__. The purpose of this note is to establish, on the basis of 
t The work described in this paper was supported two simple incompressible flows, the radiation parameters 

by the National Science Foundation under grant which govern the choice between these two formula- 
No. G-23170. tions. 
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THE INVISCID INCOMPRESSIBLE PARALLEL This partial differential equation with constant coefficients 

FLOW presents exactly the same mathematical form as that 

The first flow to be considered here is the classical obtained when solving for the temperature distribution 

inviscid incompressible medium flowing at a velocity a, across an infinitely thick plate, when a sudden tempera- 

past the entrance of a channel or past the edge of a flat ture change occurs at the surface [l]: 

plate (Fig. 1). The conservation of energy equation 
simplifies in this case to: (5) 

After substitution of the Rosseland approximation on 
the right-hand side and using the relation dh = cp dT, 
equation (1) becomes: 

For the sake of simplicity, we now assume that the 
volumetric absorption coefficient kll varies as a third 
power of the temperature. Although this assumption is 
taken only as a convenience for the mathematical treat- 
ment, it represents a qualitatively correct trend and is, 
at any rate, a better assumption than that of a constant 
coefficient kR(. If we characterize by the subscript i the 
initial uniform state: 

T3 
k1; = kxi ~ 

T,3 

and the energy equation becomes: 

%T 16OTi3 
P&dP~x= -~~ 

3km 

-CT T. = k,x 

FIG. 1. Inviscid radiating flow past a flat plate. 

The same form of solution is therefore applicable and 
the temperature profile and radiant heat flux can be 
written: 

At the wall (y = 0): 

where : 

r, = 16oTi’ . ~_ !_ = _!!-- 
3u,p,cp kmx 3Bo. T’ (8) 

PaJllU,CPT~ 
Bo - Boltzmann Number = -0T7- 

1 
(9) 

(4) 
7 = optical length = kRiX. (10) 

One notes (Fig. 2) that the heat flux to the plate is 
inversely proportional to the square root of x so that 
qR(0) tends to infinity near the forward edge of the wall 

i- 

FIG. 2. Stagnation temperature profile in an inviscid 
radiating flow. 



SHORTER COMMUNICATIONS 929 

(x + 0). Clearly, the validity of the Rosseland approxima- 
tion does not hold in this region [(K+ys) # 01, while 
the black body approximation (emission from an 
optically thick slab of uniform temperature 7’t) becomes 
valid at x N 0. 

To acquire an idea of the length XT at which this 
transition would take place, the two expressions of the 
flux are equated: 

hence : 
16 

flu 

For large Boltzmann numbers (i.e. small radiation 
losses in comparison to the energy stored in the fluid), 
rT will be large and the black body assumption will be 
satisfactory for equipment of length less than xr. 

The analogy with the drag problem in fluid mechanics 
near the edge of a flat plate (Maxwellian “free molecular” 
approximation vs. boundary-layer solution) [2] is quite 
apparent. In particular, a closer analysis of the radiation 
problem should bring out a transition regime between the 
black body and the Rosseland approximations in analogy 
with the “slip flow” of rarefied gases. 

Also note that the radiation mean free path In = l/kR; 
the optical length ‘T = X/!R pfayS, therefore, a role 

analogous to that of the Knudsen number of classical 
fluid dynamics: Kn = h/x, 1, being the mean molecular 
free path. 

THE INVISCID INCOMPRESSIBLE 

STAGNATION FLOW 
Another incompressible flow of interest is the potential 

flow in a stagnation area; in this case [3]: 

ii = QX, w = - 2UZ (12) 

where a is some characteristict velocity gradient V/L. 
The energy equation is therefore of the form: 

If we assume that the volumetric absorption coefficient 
kR varies as a cubic power of the temperature and that all 
other thermal properties are constant, this equation 
reduces to the form: 

where : 

(15) 

t Some typical stagnation flows (3) are that of a 
suhere lu = (3Vl2R). hence L = (2R/3)1 and of a 
cylinder-of axis normal to the flow [a = ‘(iti/@, hence 
L = (R/2)] (V is the upstream velocity at infinity, 
R is the radius). 

The solution of this ordinary differential equation in 
aT/az yields at the wall: 

160Z4 TuJTr - 1 
qR(0) = 2 ~ p. 

3kmL l/(nrd 
(16) 

This solution is identical, for r, = 0 to that of the flux to 
a flat plate [equation (7)] and the same conclusions hold 
about the range of validity of the Rosseland and black 
body approximations. 

It is interesting to consider in the second case the 
temperature protile near the wall. If we introduce the 
nondimensional variables T= T/T< and 7 = z/L, the 
solution of equation (14) is: 

T-1 
-*-- 
Tw - 1 

= erfc [t’(l/rfi)?] (17) 

where erfc is the complementary error function: 

erfc(x)=l -erf(x)=l-2!- 1/n I 
:exp(- ?)d& (18) 

If the temperature profile is plotted near the wall (Fig. 2), 
the influence of an increasing Pk is readily seen. It illus- 
trates the physical fact that in low Fk flows, the layers 
near the wall lose more rapidly their stored energy by 
radiation than for higher values of rk. At the limit Fh -+ 0, 
we obtain the isothermal slab (black body radiation). 

Also note that a more characteristic length 6* of the 
flow can be substituted to L: 

s* F? LQ(TrFk). (1% 

In this case equation (16) becomes (assuming for 
simplicity Tao = 0): 

16oT+* 1 
- __ -- 3kRc 6* (20) 

and 6* is truly a representative “thermal layer thickness,” 
depending on rk. If we chose to use this thickness 6* to 
identify the transition “noint” between black bodv and 
diffusive Rosseland approximations (point A of Fig. l), 
we simply obtain: 

(21) 

REMARKS 
1. In this treatment, the assumption of an inviscid 

flow was equivalent to that of no energy exchange by 
molecular collision; conduction was therefore neglected 
as well as viscous drag. In other words: 

qR NR._c s -> 1. 
9c 

The value of NR-~ in practical cases will naturally 
depend on whether qR takes a black body value oT4 
or a Rosseland one 

160TS aT --.- _ 
3kiz ay 
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and also on whether qc takes the continuous value 

- keg 

or a free molecular one 2nmkT. The situation NR--e > 1 
is naturally the common rule in those engineering designs 
where radiation transfer is predominant (e.g. radiant 
boilers). A study of the case when both fluxes are 
differential and NR-~ takes a range of linite values has 
appeared in (4). 

_ 2. The validity of the Rosseland approximation within 
an ootical thickness of 2 or 3 of the wall surface is just 
as questionable as that of molecular transfer laws within 
a few mean free paths of a solid surface. Corrections must 
be made in both cases to account for the strong non- 
equilibrium character of the fluid-solid interface [2,4]. 

If, however, one is primarily interested in the heat 
transfer to the wall [and, if the optical dimensions of the 
system are large, (7~ > 2)], this local perturbation 
can be overlooked for the radiation case as it is classically 
done in conduction or viscous drag problems. Hence the 
use of the Rosseland approximation in this note. 

CONCLUSION 

On the basis of the analysis of two simple fluid flows, 

it is possible to characterize by dimensionless parameters 
the respective domains of validity of the black body and 
Rosseland formulations in optically thick flows. 

A meaningful “radiation thermal thickness” 6* was 
shown to be a function of the dimensionless radiation- 
convection ratio F,. The analogy of this radiation 
transfer problem with classical viscous flow theory was 
emphasized. 
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